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Abstract

The erection and deployment of large flexible structures having thousands of degrees

of freedom require controllers based on new techniques of eigenvalue assignment that

are computationally stable and more efficient. Scientists at NASA Langley Research

Center have developed a novel and efficient algorithm for the eigenvalue assignment

of large, time-invariant systems using full-state and output feedback. The objectives of

this research were to improve upon the output feedback version of this algorithm, to

produce a toolbox of MATLAB functions based on the efficient eigenvalue assignment

algorithm, and to experimentally verify the algorithm and software by implementing

controllers designed using the MATLAB toolbox on the Phase 2 configuration of NASA

Langley's Controls-Swuctures Interaction Evolutionary Model, a laboratory model used to

study space structures. Results from laboratory tests and computer simulations show that

effective controllers can be designed using software based on the efficient eigenvalue

assignment algorithm.
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1. INTRODUCTION

1.1. Literature Survey

One of the widely used methods of modifying the dynamic response of a linear

time-invariant system is the placement of the closed-loop eigenvalues at prescribed

locations in the complex plane via linear state or output feedback. Since Wonham [1]

established the relationship between the controllability of linear multivariable systems

and the assignability of the eigenvalues by full-state feedback, this problem has received

considerable attention. The problem was expanded to the simultaneous assignment of

eigenvalues and eigenvectors after Moore [2] showed the nonuniqueness of control gains

(or eigenvectors) for the placing of eigenvalues, and characterized the class of all closed-

loop eigenvector sets attainable for a given set of closed-loop eigenvalues. The area

of research has also been extended to consider the output feedback problem, because in

most practical situations the full states are not directly available. The limitations imposed

by output feedback were established by Davison and Wang [3], Srinathkumar [4], and

others. This section will review and compare some of the existing literature in the field

of eigenvalue and eigenvector assignment by state and output feedback.

Linear, time-invariant, multi-input/multi-output (MIMO) systems can be represented

by equations of the form:

x(t) = Ax(t) + Bu(t) (1.1)

y(t) = Cx(t) (1.2)

where A is an n×n state matrix, B is an nxm control input influence matrix, C is a pxn

output influence matrix, x(t) is an n× 1 state vector, y(t) is a p× 1 output measurement

vector, and u(t) is an mx 1 control input vector. In all cases the system is assumed to be



completely controllable,and in the case of outputfeedback,completely controllableand

observable. Controllabilitymeasures the particularactuatorinput configuration'sability

to controlallsystem states,whereas obscrvabilitymeasures the particularsensor output

configuration'sabilityto obtainthe informationneeded toestimateallsystem states.The

following are the formal definitionsof these concepts forlinearsystems defined by Eqs.

(1.1) and (1.2).

A linearsystem is saidto bc completely controllableiffor any initialtime to,there

existsa set of unconstrained controlsu(t),thatwilltransfereach initialstatex(t0) to

any finalstatex(tl) in some finitetime tl> to.A linearsystem issaidto be completely

observable ff at any initial time to, the initial state x(to) can be determined from the

knowledge of the output y(t) and the input u(t) for times to < t < tl, where tl is

some finite time [5].

The eigenvalue assignment problem for full-state feedback entails finding an m×n

constant state feedback matrix G, used in the control law

u(t) = -Gx(t)

such that the resulting closed-loop state matrix,

fi=A-BG

has all eigenvaiues at desired locations in the complex plane. The associated problem

for output feedback has a controller of the form

u(t) = -Gy(t)

and G must be chosen to produce the desired eigenvaiues of the resulting closed-loop

state matrix

= A - BGC



The existing state and output feedback control methods can be classified into two

categories: strict eigenvalue assignment and eigenstructure assignment. The strict

eigenvalue assignment approach deals with modifying a system's behavior strictly

though the placement of the closed-loop eigenvalues. The nonunique solutions for

multi-input systems, as detailed by Moore [2], are addressed by these approaches either

by presenting the set of solutions that can be obtained, or by constraining the solution

to maximize a performance measure, i.e., a measure of closed-loop system robustness

or some norm of the gain matrix. Robustness is a measure of the insensitivity of

the closed-loop eigenvalues to system perturbations. Eigenslructure assignment is the

simultaneous assignment of the eigenvalues and eigenvectors. The assigned eigenvalues

affect the speed of response of the closed-loop system, whereas the eigenvectors

affect the relative shape of the transient response. Some of these approaches also

seek to minimize certain measures of the closed-loop system. It should be noted

that for the sake of completeness, both eigenvalue assignment and eigenstructure

assignment techniques are reviewed in this paper. Although this paper reviews both

eigen-assignment techniques, it focuses primarily on eigenvalue assignment techniques.

1.1.1 Strict Eigenvalue Assignment

In the past decade many algorithms for strict eigenvalue assignment have utilized

some triangular form of the closed-loop system matrix. One such form is the real Schur

form [6], which is generated by an orthogonal similarity transformation that yields a

quasi-upper triangular matrix, having only 1 x 1 or 2x 2 blocks on the diagonal corre-

sponding to real or to complex conjugate eigenvalues, respectively. Varga [7] proposed

a state feedback, pole-shifting procedure that modifies only the unstable eigenvalues of

the system. This partial eigenvalue assignment method is based on the Schur form of the

state matrix and on the use of QR decomposition [6]. The poles that are chosen to be



assigned are moved down the main diagonal of the state matrix using QR decomposition

and are assigned sequentially. Meanwhile, the resulting gains in the feedback matrix are

minimized. Later this procedure was the basis for the method of Maghami and Juang

[8] which uses the complex Schur form along with unitary coordinate transformations,

or Givens rotations [6], instead of QR decomposition to move the eigenvalues down

the main diagonal. A similar procedure for eigenvalue assignment was also developed

in [8] using output feedback. Petkov, et al. [9], [10] presented an algorithm which also

makes use of the Schur form and provides numerical stability, which makes it applicable

to ill-conditioned and high-order problems. This method is professed to perform equally

well with real and complex, distinct, and multiple desired poles. However, the procedure

does not seek to enhance the robustness nor minimize the resulting gains.

Patel and Misra [ll], [12] proposed algorithms for eigenvalue assignment which

deal with the systems in upper Hessenberg form (UHF) [6]. A matrix fir is said to be in

upper Hessenberg form if the elements hii = 0, i > j + 1. UHF can be achieved through

a series of Householder transformations [6]. Patel and Misra's first group of algorithms

[l l] use state feedback to solve the assignment problem for multi-input systems. The

multi-input systems are reduced to one or more single-input systems where the single-

input systems are in UHF. A type of QR algorithm is then used to solve the eigenvalue

assignment problem for the individual single-input systems. A similar procedure is

described in [12] for output feedback. In both papers the procedures assign all of the

system's eigenvalues, and no consideration is given to the robustness of the system.

Datta [13] also proposed an algorithm for state feedback eigenvalue assignment

using the UI-IF of the system equations. However, this algorithm only solves the

assignment problem for single-input systems. Later Arnold and Datta [14] extended

this approach to multi-input systems. Their algorithm does not make use of a QR type



method,but insteadusesa simple linear recursion. Although this algorithm is not a

robust pole placement algorithm, the authors claim that it gives comparable results in

"well-conditioned" problems with fewer computations.

In the literature there are several iterative approaches that directly exploit the freedom

offered by the multi-input multi-output eigenvalue assignment problem to improve the

performance of the closed-loop system or to minimize the required control effort. One

such algorithm was presented by Kautsky et al [15]. Kautsky's algorithm iteratively

maximizes a robustness measure of the closed-loop system in terms of the conditioning

of the closed-loop modal matrix through an orthogonal projection approach. This method

requires the assignment of all the eigenvalues of the system and works only for full-state

feedback.

It is also to be noted that there exist methods in which the eigenvalue placement

constraints are in the form of Sylvester's equation [16], [17]. The assignment is done via

state feedback, where the feedback gain, G, is calculated by solving the matrix equations

AT - T_I = -BP (1.3)

GT = P (1.4)

a fixed closed-loop matrix, A, subject to a parameter matrix chosen such that (A, P)for

is observable. Equation. (1.3) is referred to as Sylvester's equation. For this method/_

is chosen to have all the desired closed-loop eigenvalues. Then P is picked arbitrarily,

based on the criteria described above, and Eq. (1.3) is solved for a nonsingular matrix T.

Finally, Eq. (1.4) is solved for G, i.e. G = PT -1 . These methods based on Sylvester's

equation work only for full assignment of distinct eigenvalues.



1.1.2 Eigenstructure Assignment

Moore [2] identified the flexibility beyond strict eigenvalue assignment for multi-input

systems by characterizing the attainable eigenvector space for a set of desired closed-loop

eigenvalues. It was shown that in addition to specifying the closed-loop eigenvalues,

one has a freedom to choose one set of closed-loop eigenvectors from this attainable

space. This result opened the door for research into eigenstructure assignment. Fahmy

and O'ReiUy [18], [19] parametedzed the set of associated eigenvectors and generalized

eigenvectors and presented a state feedback eigenstructure assignment algorithm. Tsui

[20] provided a method that deals with the system in upper Hessenberg form. This state

feedback approach supplies a way to reduce the condition number of the final modal

matrix resulting in better transient response and robustness. This method can assign both

distinct and multiple eigenvalues. Kwon and Youn [21] lifted some of the restrictions on

previous eigensU'ucture assignment techniques in an algorithm that uses output feedback.

Their method allows for closed-loop eigenvalues that need not be distinct or different

from the eigenvalues of the open-loop system.

In the area of robust eigenstructure assignment, Juang et al. [22] developed a method

in which the closed-loop eigenvectors are chosen to maximize the projection on the

open-loop eigenvectors or the columns of the closest unitary matrix to the open-loop

eigenvector matrix, in order to obtain a robust closed-loop design. This approach was

later extended to provide robust eigenstructure assignment for second order dynamic

systems [23], and then for state estimators using second order models [24].

Other methods of eigenstructure assignment have also been proposed. Maghami

et al. [25] uses a subspace intersection technique to assign closed-loop eigenvalues via

output feedback. It represents an extension of [22] by allowing the assignment of the

maximum possible number of closed-loop eigenvalues. Lu et al. [26] developed partial



eigenstructureassignment,wherethe shapeof the transientresponsecorrespondingto

the unchangedeigenvaluesis control.ledby prespecifyingthe closed-loopeigenvectors

associatedwith the unchangedeigenvaluesbefore assigningthe modified eigenvalues

along with the eigenvectors.This algorithmwas shownto be effectivefor largescale

systemapplications. Eigenstructureassignmentemploying output feedbackwas also

shownto be possibleusing Sylvester'sequation,aswas illustratedin [27].

1.2. Research Objective

Traditionally, eigenvalue assignment algorithms have been used as control design

tools for linear time-invariant systems. Conventional eigenvalue assignment methods

require that all eigenvalues be assigned to specified locations. Controller design for

large order systems using conventional assignment methods proves to be computationally

excessive because of the large number of eigenvalues that must be assigned. Eigenvalue

assignment algorithms which utilize partial assignment of eigenvalues, i.e., only a small

subset of all eigenvlaues are placed, provides the computational efficiency needed for

large order systems. Future space missions that will utilize large flexible structures can

directly benefit from control design tools developed from these principles.

The objectives of this research are to:

1. Program controller design software based on the Efficient Eigenvalue Assignment

(EEA) algorithms for full-state and output feedback of Maghami and Juang [8].

2. Develop and program a new output feedback EEA algorithm to obtain a stable closed-

loop system.

3. Experimentally verify the controller design software as well as the methods them-

selves by implementing several EEA controllers on Phase 2 of NASA Langley Re-

search Center's Controls-Structures Interaction (CSI) Evolutionary Model.



The EEA algorithms will be programmed in MATLAB [28] language and expressed

in M-files. This collection of files will be named the MATLAB EEA Toolbox. The

new output feedback EEA algorithm will be an extension to the original output feedback

algorithm and will use optimization to produce an output feedback gain matrix that will

provide eigenvalue assignment while guaranteeing closed-loop stability.

1.3. Outline

The paper is divided into three main parts. First, Chapter 2 will present the theory

behind the EEA algorithm of Maghami and Juang [8]. It will detail the full-state feedback

method of eigenvalue assignment and illustrate the use of the method in a sample problem.

The output feedback method will also be discussed in Chapter 2, and a new method of

optimized output feedback to guarantee closed-loop stability will be proposed.

Chapter 3 will deal with the implementation of controllers designed using the state

feedback EEA algorithm on the Phase 2 configuration of the CSI Evolutionary Model,

a simulated space structure laboratory testbed. A discussion will be given on the

controller design software and the test procedures used. Closed-loop modal parameters

and time response data from the tests will be presented to experimentally verify the

controller design software and the EEA algorithm.

Chapter 4 will describe the controller design software produced from the new

optimized output feedback EEA algorithm. Computer simulations of closed-loop

systems consisting of a Phase 2 mathematical model and controllers designed using

optimized output feedback will be presented. Simulated closed-loop modal parameters

and time response data will be supplied for verification of the algorithm and software.

Finally, Chapter 5 will provide a brief summary of the material presented in this

work. Also, a suggestion for future research is provided.



2. EFFICIENT EIGENVALUE ASSIGNMENT

The control method implemented in this study was the EEA algorithm as described

by Maghami and Juang [8]. Eigenvalue assignment, via state or output feedback, is a

commonly used method of modifying the dynamic response of a linear time-invariant

system. While most algorithms of this nature attempt to assign all the eigenvalues of

the system, Maghami and Iuang's algorithm attains efficiency by sequentially assigning

one eigenvalue at a time without shifting the remaining eigenvalues. This approach is

especiaUy efficient when the number of assigned eigenvalues is less than the order of

the system. This is particularly true for the control of large space structures which have

thousands of degrees of freedom.

2.1. Full-State Feedback

2.1.1 Theory

The full-state feedback approach for this algorithm basically consists of three steps.

First, a Schur decomposition is applied to triangularize the state matrix. Second, a series

of coordinate rotations (Givens rotations) are used to move the eigenvalue to be assigned

to the end of the diagonal of the Schur form. Third, the eigenvalue is assigned to a desired

location by full-state feedback without affecting the remaining eigenvalues. The second

and third steps are be repeated until all the requested eigenvalues are moved to the desired

locations. Given the freedom of multiple inputs, the feedback gain matrix is calculated

to minimize an objective function composed of the Frobenius norm of the gain matrix.

The Frobenius norm of a matrix is the root sum squared of the elements of the matrix.

Once again considering the linear system defined by Eq. (1.1) and (1.2) which is

assumed to be completely controllable. Full-state feedback is used to design a constant



feedbackcontrollerwith a gain matrix Ga of dimension m x n, such that u(t) = Gix(t).

The gain matrix G1 is to be chosen in such a way that either a real eigenvalue or a

complex conjugate pair of eigenvalues of the open-loop state matrix A are assigned to

desired values without shifting the remaining eigenvalues.

The eigenvalue assignment method for full-state feedback starts with applying the

Schur transformation to Eq. (1.1), i.e.,

x = Vxl (2.1)

and premultiplying the resulting equation by V H to yield

±1 = VnAVxl + VHBGIVx1 (2.2)

where V is an nxn unitary Schur matrix and ( )n denotes the complex conjugate

transpose. The state matrix in the transformed coordinates, namely, VHAV is an upper

triangular matrix with the eigenvalues of A on the diagonal, i.e.,

Vn A V = A2 "'" X2.

0 ... A,_

where X,_ denotes the matrix elements above the diagonal. Observe from Eq. (2.2) that

it is possible to derive a gain matrix G1V (in the transformed coordinates) such that

the feedback portion of the closed-loop state matrix, namely, VHBG1V, is an upper

triangular matrix with all diagonal elements zero except the last. Hence, with such a

gain matrix, the last eigenvalue of matrix A (the last element on the diagonal of VnAV)

can be assigned to a desired value without shifting the remaining eigenvalues of A. In

order to extend this technique to assign any arbitrary eigenvalue Ai (the ith value on

the diagonal of VHAV), a series of appropriate coordinate transformations (coordinate

system rotations) must be used to move A, to the last position on the diagonal. This

10



is accomplishedwith a unitary Givens rotation, Ri, applied such that xl = R, xm. The

form of the Givens rotation matrix is

-1 0

0 1

......

0

Ci S i

--Si Ci

• "'. 0

0 ...... 0 1

(2.3)

where c_ and s, are, respectively, real and complex scalar parameters defined such that

2 *

c i + sis i = 1 (2.4)

and the superscript * denotes the complex conjugate. The required parameters c, and s,

of Eq. (2.3) are determined from

bb*
2 = . (2.5)

(A_ - Ai+l)c; (2.6)
Si _ b

where b is the (i,i + 1) element of the matrix VnAV. Note that if b = 0, then c_ and

s_ are, respectively, set to 0 and 1 in Eq. (2.3).

The result of the coordinate transformation is to switch the positions of Ai and A_+l

on the diagonal. The state matrix in the transformed coordinates thus becomes

0 "-. .a.'_,_

: )li+ 1 "

Ai

• ... :

0 0 ...... A,_

RiHVH AVRi = (2.7)

This transformation is repeated n-i times in order to move A_ to the last position on

the diagonal. The dynamics of the system in the final transformed coordinates may be

written as

5c2 = L n ALx2 + L H BG1Lx; (2.8)

I1



or

ic2 = fix2 + BGlx_ (2.9)

where L is the composite unitary transformation that moves A_ to the end of the diagonal

and is given as follows:

L = VRiRi+IR.__ (2.10)

and

ft = LHAL; [3 = LHB; G1 = GIL (2.11)

To ensure the assignment of the desired value for A_, without affecting the remaining

eigenvalues, the matrix G1 is chosen in such a way that /)G1 is an upper triangular

matrix with diagonal elements zero except for the last element. Such a gain matrix may

be of the form

G1 = (0 I gl ) (2.12)

where gl is an mx 1 vector. Obviously, with such a choice, BG_ would be a null matrix

except for the last column. The local gain matrix GI is related to the vector gz from

Eq. (2.11)

G1 - H= glL, (2.13)

where L, represents the last column of the transformation matrix L.

Assuming that/z_ is the desired closed-loop value for A_, then gl is determined such

that

b,,gl = #i - Ai (2.14)

in which b, represents the last row of the current matrix/). Any given solution of gl

that satisfies Eq. (2.14) will then produce a local gain matrix G_ from Eq. (2.13) that will

12



move the eigenvaluehi to the desired eigenvalue p;. Now, depending on the number

of control inputs, an optimum solution for _x corresponding to a minimum gain design

may be formulated.

The vector gl is chosen to minimize a cost function that includes the current global

gain matrix, which is obtained by adding all the local gain matrices that assign all the

eigenvalues _j, j = 1,..., i - 1 to the desired eigenvalues p j, j = 1,..., i - 1, and keep

the remaining eigenvalues unchanged. This cost function along with the constraint of

Eq. (2.14) represents an optimization problem. The optimal solution yields a gain matrix

that would assign the ith eigenvalue hi to a desired value p_, keep the other eigenvalues

of the current state matrix unchanged, and minimize the Frobenius norm of the global

gain matrix. The Frobenius norm for the global gain matrix, G, is calculated by taking

the square root of the sum of the diagonal components of (GTG). The choice of the cost

function to minimize the norm of the gain matrix is particularly practical for applications

where available control power is limited.

Using Lagrangian multipliers [29], the optimization problem can be reduced to the

solution of a system of simultaneous equations. Once the solution for the local gain

matrix is obtained, it is added to the global gain matrix to produce the new global gain

matrix, i.e. G = G + G1. The state matrix A is similarly updated

= A +/3G1 (2.15)

Obviously, any practical solution for the local gain matrix must be real, but the

solution of the optimization problem is, in general, complex. This problem is overcome

by adding an additional constraint to the optimization problem to ensure that the global

gain matrix is real when the complex conjugate of the eigenvalue A,, namely A_, is

being assigned. First a series of Givens rotations are employed to move A_ to the end

13



of the diagonal. Then the required gain matrix is determined from the solution to the

second optimization problem. Afterwards, the global gain matrix and the state matrix

are once again updated. This solution provides a second local gain matrix that assigns

the eigenvalue A_ to the desired value #_. In the case where the eigenvalue to be

assigned is real, this second optimization is not necessary. This entire procedure of

Givens rotations and optimized assignment by full-state feedback is repeated until all the

requested eigenvalues are assigned to the desired locations. Figure 1 shows the details

of the entire eigenvalue assignment algorithm.

14



Enter /_ .... kJ-_j= eigenvalues of A to be assigned
A, B, k j, gj / _._= desired closed-loop locations of_.j

on A and B yielding A and B

Set kj to next eigenvalue _ Set i to current position I

to be assigned [_l of _.j on diagonal of _, I

,
I

Calculate Givens rotation I

matrix to switch hk with _'k+l Ion the diagonal of _,

Calculate local feedback gainmatrix GI to assign kj to 0"j while Set _, and § equal to [

minimizing global gain matrix G Givens transformation of

_, and B respectively

ISetA=A+BGll I

Set G 1equal to G1

in global coordinates

ISetG=G+G1]

yes n?_no Set i to current position Iof _.'j on diagonal of _,

loop. Calculate Givens rotation

exit x_OR k = i TO n'l_ ma: _S_a'i_gh_a] _if'i g _+'

matrix G2 to assign k_ to p._ while
minimizing global gain matrix G

ISotA:A÷BG21

Set G2 equal to G2

in global coordinates

[Set G = G + G21

1

Set _, and B equal to [

Givens _ansformation of

A and B respectively

Figure 1. Flowchart of State Feedback EEA Algorithm
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2.1.2 Sample Problem with Full-State Feedback

The eigenvalue assignment technique for full-state feedback can be clearly demon-

strated with a sample problem. Let us consider the two degree of freedom, spring-mass-

damper system illustrated in Figure 2.

Figure 2.

k I V ul u2k, [--

Cl L Zl Z2

Spring-Mass-Damper System

The system has two force inputs, u_ and u2, and two displacement outputs, yl=z1 and

y2=z2. The two second order equations of motion that describe this system are as follows:

TnlZ1 "71-(Cl 21- C2)Z1 -- C2Z2 "3V (_1 21- _2)Zl -- k2z2 -m- _1

m_2-c2_1 +c2_-k2zl +k2z2 = u2

This system of equations can be converted to a first order state space form,

[_] = A[z] + B[u]

where,

Iv]:

I 0

_ (k_ +k2)
ml

A= 0

k._L2
tn 2

[oo± 0

0 0

0 1..k_
gn 2

°°C= 0 1

1 0 0
(cl +c_. _...z.2 ¢_z_2

rrll rll I rr_ 1

0 0 1

c.&_2 __ k.Z.2 __ c...2_2

rn.2 m 2 m2

0ol
16



and the statevariablesare definedas,

[ xl ] [ zl

X2 Zl

X3 Z2

X4 Lz2

Next we will assign numerical values to the physical constants. Let m,=l kg, m2=2

kg, kl=l N]m, k2=l N/m, Cl=6 kg/s, and c2=5 kg/s. Substituting these values into the

state space equation, yields

0.00

-2.00
A=

0.00

0.50

0.00

1.00
B=

0.00

0.00

1.00C = 0.00

1.00 0.00

- 11.00 1.00

0.00 0.00

2.50 -0.50

0.00

0.00

0.00

0.50

0.00 0.00 0.001

]0.00 1.00 0.00

The eigenvalues of A are -0.18, -0.23, -1.00, -12.09.

0.00

5.00

1.00

-2.50

Using the full-state feedback

technique described earlier, we will assign the first two eigenvalues to a desired location

of -2.00. In other words, we will determine a state feedback gain matrix so that the

resulting closed-loop system will have the eigenvalues: -2.00, -2.00, -1.00, -12.09.

First the A matrix is transformed into Schur form, putting the eigenvalues along the

main diagonal. A will be used to denote A in transformed coordinates, and similarly for

all other matrices in transformed coordinates.

-12.09 -2.14

A = 0.00 -0.18
0.00 0.00

0.00 0.00

2.26 2.74 1

-0.06 1.01 |

-0.23 0.72/
o.oo -t.OO.l

The same transformation is applied to B, yielding

0.97 -0.12]

0.02 -0.07

-0.11 -0.09

0.24 0.47
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Now the first eigenvalue to be assigned must be isolated at the end of the main

diagonal of A. This is done through a series of Givens rotations. In this case we first

wish to move -0.18 to the end of the diagonal of ¢i. The first Givens rotation switches

the second and third elements on the main diagonal.

A

-12.09 -2.14 2.26 2.74

0.00 -0.23 -0.06 1.01

0.00 0.00 -0.18 0.72

0.00 0.00 0.00 -1.00

Another rotation switches the third and forth elements, placing -0.18 at the end of the

diagonal.
-12.09 -2.14 2.26 2.74

._ = 0.00 -0.23 -0.06 1.01
0.00 0.00 -1.00 0.72

0.00 0.00 0.00 -0.18

At the same time each of these Givens rotations was applied to/t, yielding

0.97 -0.121

/_ = -0.05 -0.111

0.22 0.47 /
0.12 0.08.]

At this point a local gain matrix, G1, is calculated to assign -0.18 to -2.00 without

affecting the remaining eigenvalues. As described earlier, there is some flexibility in

choosing a local gain matrix for this assignment. Therefore the gain matrix is also

chosen to minimize the norm of the global gain matrix, which is the sum of all the

previous local gain matrices. At this point there are no previous local gain matrices, so

G1 is calculated to be the local gain matrix with the minimum norm. The current/1

matrix is then updated by A = A +

-12.09

A = o.oo
0.00

0.00

/_C1, yielding

-2.14 2.26 2.74

--0.23 --0.06 1.01

0.00 --1.00 0.72

0.00 0.00 -2.00

G1 is then transformed back to the original coordinate system, and this gain matrix,

denoted G_, will be used in the calculation of the global gain matrix. G1 for the first
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eigenvalueassignmentis

-10.07 -1.31 2.74 -1.64]G1 = -6.30 -0.82 1.72 -1.03

This is also equal to the current global gain matrix, G.

Now a new series of Givens rotations are used to move -0.23 to the end of the main

diagonal of ,4. The result of which is

-12.09 -2.14 2.26 2.74

0.00 -1.00 -0.06 1.0l

0.00 0.00 -2.00 0.72

0.00 0.00 0.00 -0.23

The Givens rotations are also applied to/3. An optimum local gain matrix is calculated

to assign -0.23 to -2.00. /1 is updated with the new G1

-12.09 -2.14 2.26

0.00 -1.00 -0.06
A=

0.00 0.00 -2.00

0.00 0.00 0.00

2.74

1.01

0.72

-2.00

The new G1 is transformed back to the original coordinate system, yielding

-2.21 -0.12 1.40 0.36]G1 ----- 20.34 1.11 -12.91 -3.29

This is added to the previous G1 to produce the final global gain matrix

G= [-12.28 -1.43 4.14 -1.28]14.040.29-1t.19-4.32

With all the desired eigenvalues placed, this G is the final feedback gain matrix. The

closed-loop state matrix formed with this G is AcL = A + BG and

ACL

0.00 1.00 0.00 0.00

-14.28 -12.43 5.14 3.72

0.00 0.00 0.00 1.00

7.52 2.65 -6.10 -4.66

The eigenvalues of AcL are -1.00, -2.00, -2.00, -12.09.

This numerical example illustrates the sequential eigenvalue assignment employed

by EEA using full-state feedback. Desired eigenvalues are assigned without shifting the
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remainingones.Onecanseehow this techniqueis especiallyefficientwhenthenumber

of assignedeigenvaluesis smaller thanthe orderof the system.In the next sectionthe

EEA algorithm using output feedback will be discussed.

2.2. Output Feedback

Since full-state feedback may not be available for implementation in many real

applications, an EEA procedure using output feedback was also developed by Maghami

and Juang in [8]. In this section the theory behind output feedback eigenvalue assignment

will be discussed, as described by Maghami and Juang. Also a new enhancement to

this algorithm is described, which attempts to overcome the major shortcoming that the

stability of the resulting closed-loop system is not guaranteed for all output feedback

eigenvalue assignment techniques, including Maghami and Juang's.

2.2.1 Theory

Maghami and Juang point out that for (almost all) fully controllable and observable

systems, with m inputs and p outputs, min(m + p - 1, n) eigenvalues of the system may

be arbitrarily assigned with real gains. The closed-loop dynamics of the system with

output feedback is given as

±(t) = [A + BGC]x(t) (2.16)

where G is an mxp output feedback gain matrix, and A, B, C, and x(t) have been

previously defined.

Maghami and Juang's output feedback algorithm works in two steps to assign the

maximum allowable number of eigenvaiues. First, rh pairs of eigenvalues may be

assigned, where 2rh < m -- 1, via any of the output feedback methods outlined in

the literature [3], [4], [22]. For this discussion we shall be considering the case where
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all the systemeigenvaluesare complex. These initially assigned eigenvalues are kept

unchanged during the next step, where the remaining p eigenvalues are placed to the

desired values. The output feedback gain matrix for the entire assignment is then the

sum of the gain matrices obtained from each step. One of the major shortcomings of

output feedback eigenvalue assignment techniques, including this one, is that the stability

of the resulting closed-loop system is not guaranteed (an attempt to resolve this problem

will be discussed in Section 2.2.2).

If we assume that the A matrix in Eq. (2.16) is the closed-loop state matrix after

the initial assignment of eigenvalues, then we can begin with a detailed description

of the second part of the output feedback algorithm. As with the state feedback

algorithm, a Schur transformation is applied to the system placing the eigenvalues along

the main diagonal of A. Next, the previously assigned eigenvalues, or the open-loop

eigenvalues selected to be kept unchanged, are moved to the end of the diagonal via

Givens transformations. The resulting closed-loop system becomes

x(t) = [A +/_GC]_(t) (2.17)

where R(t) = Lx(t), A = LNAL, B = LUB, C = CL, and L is the cumulative

transformation matrix defined as L = VR1... R,.

Let/3,_ denote the last 2_ rows of/3.

G are chosen to lie in the right null space of B,_, the feedback return matrix BGC will

not affect the rh pairs of eigenvalues at the end of the diagonal of A. Defining qJ as an

orthonormal basis spanning the right null space of matrix/_,_, i.e.,

/3,_ = 0 (2.18)

the gain matrix G can be expanded in terms of

Then, it is obvious that if the columns of

G = kOq (2.19)
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in which q is an r×p coefficient matrix, and r denotes the dimension of the null basis.

The eigenvalue assignment problem is now reduced to finding a set of coefficients q that

assigns the remaining p eigenvalues of the following subsystem

x,(t) : [A., + B, kVqC,]yc,(t) (2.20)

where At, /?r, and Or are submatrices composed of the first (n- 2r_) rows and

columns of A, the first (n- 2r_) rows of /_, and the first (n- 2r_) columns of C,

respectively. Here _ denotes the first (n - 2m) elements of _. Since all the variables

in Eq. (2.20) are complex, the task of assigning the desired eigenvalues may be quite

cumbersome. However, due to the unique nature of the Schur vectors a more amenable

and computationally efficient companion system may be considered instead as follows:

_,(t) = [A, + BkOqC]z(t) (2.21)

where A_ is an n xn matrix defined as

A_=L 0

and z(t) is a companion state vector. The eigenvalues of A_ are the same as eigenvalues

of Ar except for _ pairs of additional zero eigenvalues, which will similarly not be

affected by the feedback return of Bk_qC. All the variables in Eq. (2.21) are real except

and q. Since only real-valued gain matrices are meaningful, the gain matrix in Eq.

(2.21) is replaced by the real part, such that

i(t) = [A_ + B(k_RqR - _,qz)C]z(t) (2.22)

Now every variable in F-xl. (2.22) is real. The eigenvalue problem for Eq. (2.22)

is given by

[Ac + B(tPRqn - qJiq,)C]r]k = rlkfz k (2.23)
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where r/k and #k, respectively, denote the kth eigenvector and desired eigenvalue.

Expanding Eq. (2.23) in terms of real and imaginary parts of qk and #_ and rearranging

the results in matrix form yields

where

Fk

?]kR

rlkt

qRCrlkR

q1CrlkR

qRCrlkl

q1Crlkl

= I_k¢_ = 0 (2.24)

and _ = [_.

r_=[A,-m_Io m,I. B,i, o ]L -pk1I. A_ - #knI,_ 0 B_

-_i ]- Equation (2.24) is satisfied for each pair of complex conjugate

eigenvalues. Let v_ denote an orthonormal basis for the solution of Eq. (2.24) that spans

the null space of Fk. If s pairs of eigenvalues are to be assigned, then the solution of the

homogeneous equation of Eq. (2.24) may be written for the kth pair (k = 1..... s) as

" CkR "

¢k1

CkRR

FkCk = Fk = rk
CkR1

CkII .

VkR

Vkl

VkRB

VkRI

VklR

.Vkll

ck = 0 (2.25)

where the null basis v_ has been partitioned into six components according to Eq. (2.24),

and ck are the appropriate coefficients for the basis vk. Comparison of Eq. (2.24) and

(2.25) yields that the matrices qR and q_ must satisfy

qRC[OkR, Ck,] = [¢k.R, CklR]; ]¢ = 1,..., S (2.26)

qtC[¢_R,¢k,] = [¢km, CkH]; k = 1,...,S (2.27)

It is observed from Eq. (2.25) that any freedom provided by the multi-inputs and

multi-outputs is imbedded in the coefficients Ck. This freedom can be exploited to

achieve better closed-loop criterion such as minimizing a weighted norm of the gain
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matrix or, as will be discussed in the next section,achieving guaranteed closed-loop

stability.However, as long as the coefficientsck arc chosen to generate a setof linearly

independent cigenvectors,a solutionfor the gain matrix can be obtained.

Equations (2.26)and (2.27)can bc writtenin a generalmatrix form

q,,+ = ¢ (2.28)

in which

q/¢' = _ (2.29)

,I,= C[¢,,,, ¢,,,..., e,,,+,¢,,]

,i, = [¢,RR,¢',,R,-.., '_,R_,¢,,R]

The solution for qn and qI is then given as

qn = ¢[@]'r (2.30)

q, = _[_]+ (2.31)

where [ It is the pseudoinverse. Note that the solutions given in Eq. (2.30) and (2.31)

arc unique or minimum norm depending on the number of pairs assigned. With qn and

qt determined, the output feedback gain matrix G is computed as

G = Kgnqn - _lqI (2.32)

It can be shown that the columns of the gain matrix G satisfy the orthogonaiity condition

of Eq. (2.18) provided that rh pairs of eigenvaiucs assigned previously are either real or

complex conjugates. The procedure discussed here can assign up to min(m + p- 1, n)

eigenvalues with output feedback.
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2.2.2 Optimized Output Feedback

The output feedback EEA algorithm developed by Maghami and Juang [8] is a

computationally reliable control design tool. However, when it is applied to real systems,

such as the control of large space structures, the drawback of unguaranteed stability can

make it unviable in some cases. This is also true for most output feedback eigenvalue

assignment algorithms. The EEA technique can only enhance the possibility of achieving

a stable solution by imposing constraints on some of the most sensitive open-loop

eigenvalues. Nevertheless, the method does quantify the freedom in the calculation of the

final feedback gain matrix. It is proposed to exploit this freedom through optimization

to produce a stable closed-loop system.

The previous section detailed how the eigenvector coefficients ck in Eq. (2.25)

contained the freedom to provide different feedback gain solutions. The solution to

the eigenvalue assignment problem is nonunique, and arbitrary choices of ck produce

different gain matrices, each of which will assign the min(m + p - 1, rt) eigenvalues of

the system. However for the case where rn + p - 1 < rz, each choice of ck will effect the

closed-loop values of the remaining n - (m + p - 1) eigenvalues. It is these remaining

eigenvalues that can cause the nominal closed-loop system to be unstable. Therefore,

one would like to find the values of ck that would produce a stable closed-loop system

and, since the flexibility exists, minimize the norm of the gain matrix. This can be

accomplished by delegating the choice of ck to a constrained nonlinear optimization that

minimizes the norm of the resulting gain matrix subject to the constraints that the real

parts of all the remaining n - (m + p - 1) eigenvalues are less than zero or less than

some specified limit.

25



The constrainednonlinear optimization problem can be posed mathematically as

rain
: f(ck) = IGIF

Ck
(2.33)

constraint: real(Acl) < 0

where [G[F denotes the Frobenius norm of the feedback gain matrix and Ad denotes the

eigenvalues of the closed-loop system (A + BGC). Figure 3 shows how this proposed

optimization is incorporated into the output feedback algorithm.
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A, Enter / _'_-_ = ¢igenvalues to be kept unchanged (i= 1..... 2_)
B, C, 'ui, _k/- .... L__= desired closed-loop eigenvalues (k=l ..... 2s)

Perform Schur transfo_rmatio_non A and B yielding A and B

I Givens rotations used to move
each 'ai to end of diagonal of h.

Rotations aLso applied to

[Set§_ = last 2fit rows of§ I

Isetv--n hasi °f§ I

I Set Xr equal to f_st (n-2_)rows and columns of X I

Set Ac= IO r _], transformed back

to the original coordinate system

exit _ loop I VAc- _kRIn I.tkgIn B*g - B* I

_FOR eachPair°fgk_ SetFk= L- _tkRIn Ac- _kRIn 0 0

i
Constmined Nonlinear Optimization"_ loop

Mimmize norm of G

ubject to real(Zcl) ¢: specified limit.../

INOWCkC"O  nl

[Set*,--vkckl

[Cal_mteq from0_[

i

I Set k cl = eigenvalue.s of (A+BGC) I]

0

BVR

Figure 3. Flowchart of Optimized Output Feedback EEA Algorithm
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3. IMPLEMENTATION OF STATE FEEDBACK EFFICIENT EIGENVALUE

ASSIGNMENT CONTROLLER ON PHASE 2 CEM

A series of controllers based on the state feedback EEA algorithm were designed and

tested on the Phase 2 configuration of the CSI Evolutionary Model (CEM). The Phase 2

CEM is one in a sequence of laboratory models, developed at NASA Langley Research

Center, to explore improved ways to model, control, and design space structures [30].

The purpose of these experiments was to experimentally verify controller design software

based on the EEA methods described in [8] as well as to verify the methods themselves.

3.1. Phase 2 CEM Description

The Phase 2 CEM, shown in Figure 4, consists of an aluminum truss structure 620

inches long and 110 inches wide, constructed from 10 inch cubical bays. The structure

has a 62 bay long main truss, four 10 bay horizontal suspension trusses, an 11 bay

vertical laser tower, and a four bay vertical reflector tower. There are three two axis

gimbals mounted on the main truss, a 17 inch diameter reflector mounted on top of the

tower at the aft end of the structure, and a laser source mounted on top of the other

tower. The structure is suspended from the ceiling (about 840 inches above the main

truss) by four cables as shown. Each of these cables are in turn connected to pneumatic-

magnetic suspension devices which are used to simulate a near zero gravity condition.

Eight proportional bi-directional air thrusters, with a maximum output force of 4.4 lbs

each, provide the input actuation, while collocated servo accelerometers provide output

measurements. Because the controllers designed for the structure used velocity feedback,

the acceleration measurements were passed through an integrator to produce velocity

measurements. For the following series of tests to be described, the laser source and

reflector, used to provide information on the global line-of-sight pointing accuracy, and
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thethreegimbals,usedto simulatethe interactionof scienceinstrumentsandthe control

systemswith the spacecraft,were not used.

t Thrusters(1-8)Accelerometers(1-8) Q

Z

xj
¥

Figure 4. CSI Evolutionary Model - Phase 2

3.2. Modeling of Phase 2 CEM

It was necessary to generate a mathematical model of the Phase 2 CEM for design and

simulation. The equations of motion for the structure can be written in a second-order

form as

M_ + D#, + Kz = Fu (3.1)

where M, D, and K are the mass, damping, and stiffness matrices, respectively; z is the

displacement vector; u denotes the control input; and F is the input influence matrix

characterizing the locations and types of input.

Now let us assume that there is no damping in the system. This leaves us with

M_ + Kz = Fu
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In order to solve the homogeneous equation

M_ + Kz = 0 (3.2)

a solution is assumed to be of the form

{z(t)} = {z}_"

Substituting this assumed solution into Eq (3.2) yields

(K-,2M){Z} = {0} (3.3)

or for a particular mode

(K-w_M)_bj= {O} (3.4)

where wj and Cj represent the natural frequency and the structural normal mode shape,

respectively, for mode j. From Eq. (3.4) we can obtain the following properties,

• TMO = I (3.5)

o ]
_TK_ = --w_ (3.6)

k 0 -_

and with the assumption of modal damping, we have

_TD_ = (3.7)

where (_ represents the damping ratio of mode j, and q represents the number of modes

used to construct the model.

Now we wish to express Eq. (3.1) in a first-order form by defining the vector x as

x-[:]
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resulting in the compactreformulation

z_ = Ax + Bu (3.9)

where

and

[o I]A = _ 1K _M_I D (3.10)

The model of the Phase 2 CEM assumes that velocity is the measured output of the

system. Therefore, the first-order output equation for the structure can then be written as

y = Cx (3.12)

Because the sensors and thrusters are collocated, the output influence matrix, C = B r.

Finally, combining Eqs. (3.5) through (3.7) with Eqs. (3.10) and (3.11) the state

malafx can be expressed as

0 I

-w_ 0 -2_,_ 0

0 __¢._2
q

and matrix B can be expressed as

--2_qCdq

(3.13)

[0]B= _r (3.14)

The numerical values for the mode shapes and the modal frequencies were obtained

from an eigensolution of a MSC]NASTRAN finite element model of the Phase 2 CEM.

The solution provided information on the first 95 modes of vibration, however in order
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to reducethe number of computationsrequired,the resultingmodel was constructed

with only 20 modes. Because damping for a complex structure is difficult to model, a

modal damping ratio of 0.1% was assumed for all modes. The Phase 2 CEM state space

model was constructed using Eqs. (3.13), (3.14), and the modal parameters described

above. This 20 mode model was used to design the following controllers.

3.3. Controller Design and Phase 2 CEM Implementation

The EEA algorithms were programmed in MATLAB M-files. Both full-state

feedback and output feedback versions were programmed; however, during the time

allotted for testing on Phase 2, only an output feedback version without optimization

was completed. This output feedback version did not provide stabilizing controllers

for the Phase 2 CEM. Therefore, only controllers designed using state feedback were

implemented on the structure.

The state feedback eigenvalue assignment program requires the user to supply the

state and input matrices and to specify which open-loop eigenvalues are to be assigned

and the desired locations of these eigenvalues. The program then computes the full-state

feedback gain matrix required to place only the specified open-loop eigenvalues to the

desired locations without effecting the remaining eigenvalues.

Since full-state feedback is not available for the Phase 2 structure, a Kalman filter

was used in series with the controller to provide estimates of the full state from the

velocity signals integrated from all eight accelerometers. The Kalman filter was designed

using the linear quadratic estimator function supplied in the MATLAB Control System

Toolbox [31]. The weighting matrices were chosen to produce an estimator with poles

at least twice as fast as the closed-loop system poles. In general, the designed estimator

had a majority of the poles about six times as fast as the closed-loop system poles.
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UsingtheEEA program,a series of controllers were designed for Phase 2 CEM. The

goal of each controller was to increase the damping of the first two flexible body modes

of vibration in the Phase 2 structure without effecting the open-loop frequencies. As

shown in Table 1 the first two flexible body modes of Phase 2 are the seventh and eighth

modes of vibration. Having decided that the controller would place the two pairs of

eigenvalues associated with modes seven and eight, the desired closed-loop eigenvalues

reflecting a new level of damping had to be calculated. This was done as follows:

A complex conjugate pair of eigenvalues can be represented as

where ¢ is the damping ratio, and w,, is the undamped natural frequency. The objective is

to produce a new eigenvalue pair with the same undamped natural frequency and a new

damping ratio, which we will call _. The new eigenvalue pair would then have the form

where w,_ is either calculated from the real and imaginary parts of _ or taken directly from

the finite element model data. Thus the complex conjugate pairs of p are the desired

closed-loop eigenvalues.
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Table 1. Phase 2 CEM - Measured Open-Loop Modal Information

Rigid Body

Modes

Flexible

Body Modes

Mode

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Frequency (Hz) Damping (%) Description

0.132 5.503 Yaw

0.135 4.576 X Pendulum

0.136 3.658 Y Pendulum

0.180 5.807 Bounce (node near laser tower)

0.192 5.885 Bounce (node near reflector tower)

0.344 2.420 Roll

1.767

2.432

3.049

5.689

6.137

6.451

6.577

6.734

7.218

7.777

8.719

0.238 1st Torsion

0.178 1st XoZ Bending

0.291 1st X-Y Bending

0.183 2nd X-Z Bending

0.175 Reflector Appendage Rocking

0.575 Reflector Appendage Rocking

0.202 Reflector Appendage Rocking

0.366 Reflector Appendage Rocking

0.195 Cable

0.236 Laser Tower X-Z Bending

0.250 2nd X-Y Bending

9.146 0.177 2nd X-Z Beading

10.212 0.206 Laser Tower Y-Z Bending

13.087 0.057 3rd X-Y Bending

The EEA program is ideally suited to produce controllers to increase the damping on

certain modes of the Phase 2 structure as this controller design makes use of the efficiency

of the algorithm because the number of eigenvalues to be assigned is much less than the

order of the system. The assignment algorithm also assures that the open-loop modal

parameters of the other modes remain unchanged.
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3.4. Test Procedure and Results

After the closed-loop systems were simulated and verified in MATLAB, the EEA

controllers were tested on the Phase 2 structure. Each controller was designed to produce

a different level of modal damping. Table 2 lists these tests. The procedure for each 40

second test consisted of 10 seconds of open-loop sinusoidal excitation of the smacture

using the air thrusters, followed by one second of free decay, then during the remaining

29 seconds the controller command loops were closed. In the case of the open-loop tests

(Tests 1 and 12), the final 30 seconds were all free decay. Through inspection of the input

matrix, it was determined which thruster should be used to excite a given mode to provide

the optimum excitation in that mode. This was done by identifying the largest positive

number in the row of the input matrix that pertains to the mode to be excited. The number

of the column that contains this number is the number of the thruster that should be used

to provide the most efficient excitation. In tests 1 through 11, sinusoidal command inputs

were given to thrusters 8 and 4 at frequencies of 1.7074 Hz and 2.3782 Hz respectively.

This predominantly excited only the first torsional mode and the first X-Z bending mode

at the natural frequencies. In tests 12 and 13, in addition to thrusters 8 and 4, thrusters 1

and 5 were fired at frequencies of 0.1302 Hz and 0.1321 Hz respectively to also excite

the first two rigid body modes. Test 13 was done to evaluate that the controller does not

become unstable when modes other than those being controlled are also excited. In all

the tests the amplitude of the sinusoidal thruster inputs were 2.0 volts or 0.81 lbf of thrust.

In order to check the performance of each controller, the desired damping for a

given mode must be compared with the closed-loop damping obtained for that mode. An

eigensystem realization algorithm using data correlation (ERA/DC) [32] was employed

on the time response data from all eight accelerometers for each test to determine the

modal parameters for each closed-loop system. The results of this analysis are also shown
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in Table 2. The ERA/DC analysis was able to identify the modal parameters of the modes

with substantial excitation. However, the accuracy of the ERA/DC analysis for modes

with less excitation was poor, particularly in reference to the modal damping. This loss

of accuracy prevents an evaluation of the non-controlled modes to determine whether

they were affected by the state feedback controller. Nevertheless, since modes seven

and eight were substantially excited, there is a high level of confidence in the modal

parameters obtained for these modes by ERA/DC.

Table 2. Phase 2 CEM - Performance of EEA Controller

Test Description

1

2

3

4

5

6

7

8

9

10

11

12

13

Excitation of modes 7,8
Opon-loop response

Excitation of modes 7,8
Eigenvalue placement of modes 7,8

Excitation of modes 1.2.7,8
Opea-lonp response

Excitation of modes 1.2,7,8
Eigenvalue placement of modes 7.8

Desired Damping of
Mode (%)

7 8

1.000 1.000

1.500 1.500

2.000 2.000

3.000 3.000

4.000 4.000

6.000 6.000

8.000 8.000

10.000 10.000

12.000 12.000

15.000 15.000

10.000 10.000

* Measured using ERA/DC analysis of time response data

Measured Damping
of Mode (%) "

7 8

0.238 0.178

1.258 1.022

1.813 1.506

2.369 1.986

3.356 2.941

4.405 3.685

5.911 5.295

7.358 6.585

8.628 7.651

10.873 7.865

11.703 8.280

0.241 0.203

8.933 7.975

Measured Frequency
of Mode (Hz) *

7 8

1.767 2.432

1.778 2.449

1382 2.458

1.789 2.464

1396 2.477

1.806 2.491

1.827 2.521

1.849 2.551

1.867 2.582

1.912 2.626

1.942 2.676

1.778 2.433

1.902 2.593
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During each test the data from all eight accelerometers and thrusters was recorded.

Figures 5-10 show the closed-loop time responses compared to the open-loop time re-

sponses for selected tests. For clarity and brevity only the data for the accelerome-

ter/thruster pairs 8 and 4 are shown in Figures 5-8. These time response graphs best

reflect the movement of the structure. For Test 13, shown in Figures 9 and 10 in which

four modes are excited, the data for the accelerometer/thruster pairs 1, 5, 8 and 4 are

shown.

One can see in all the plots of accelerometer data the shorter settling time of the

closed-loop stem compared to the open-loop system. Figures 7 and 8, which show data

from Tests 9 and 11, respectively, best illustrate the reduced settling time. Both of

these closed-loop tests produce a settling time under five seconds, compared to over 30

seconds for the open-loop system.

The plots of thruster data shown in Figures 5 to 10 reveal the relatively low command

power that was necessary to change the damping of the structure. This was due to the

small norm of the feedback gain matrices calculated by the EEA algorithm. The thrusters

can supply a maximum force of 4.4 lbs, which is achieved with a thruster command signal

of 10.9 volts. In all the tests conducted the thrusters were never commanded to fire over

1.62 lbs of force or 4.0 volts.
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39



2C

!,°

-II1

-2(]

-4C

-5C

Phase 2 CEM: Accelerometer #8
I

I

//
W

I

I
5

[ I I f 1
I I I I I

'=-'---',-- T- _-- -],---
_---t--_---

I
10 15 20 25 30 35 40

Time (s)

50

40

30

20

-20

-30

-40

.so'o

Phase 2 CEM: Thruster #8
I l I I I I
I I I I I I

---,--,--,---,------------,,
- - - }- - -F-I- -i- - -i- - -I- - --_- - --t- - -

I t h i i i t
-l---l---J---l---l---mummm t, , , , ,

IIIillUliliJIiHILIH. --I-- -- -I-- -- __1____ __1____ __1__ __ __

I I I I I

I IIIBRlllrl I ', ,,
flmmmmnnlr-,---,---r- n---1---
Illllllllllllllll III ' I , , i
--- r"-'_-ir- -i- - -i- - _- - _ - - -1- - -

i Ill l I I i i

- -- -- i-- -- -- I'-II'- -I- - -I- - --i- - -i - - -I - - -
I I I ' I I I I I

L- - -_ - -i- - -i- - _- - ._- - ..q- - -
I II I I I I I

I I I I I l I
5 10 15 20 25 30 35 40

Time (s)
40

Figure7. StateFeedback Test9: Closed-LoopversusOpen-Loop Time Response

40



3_

2(

IC

<

-2C

-3C

4(

-5(

Phase 2 CEM: Accelerometer #8
I I I I I I I
I I I I I I I

--r--_--r--r--1---1-- _---

- - • 'i__' - 4- - -_- - -_- - -• , _ _ '.._ '::.:.i_::_ . .

• : _ i_i'-r'ii_..._

°°+t+o+.t
---t-. "± _-_- --i--.-t- ]_ op,_-Lo,_

I I I I I
5 10 15 20 25 30 35 40

Time (s)

4_

3C

2C

-1(

-2{

-3(

4(

-5(

Phase 2 CEM: Accelerometer #4
[ 1 1 I I I I
I I I I I I I

-- -r - -r - -r - -I- - -I- - _- - -I - -

I A. I i i I i
-- _lililtil_+_-- .... -_- - -_- - -_- -

_ " ; I -_,_, :_" ,"_ ,_.. _:

- _ _,, "__m--:_--
• ""_;_ ii _f!_lii t_l_ii_,t_iiii_.:_,-,,,

.......... '',",_'_,_"_i_f_.,'._

_"F- -I- -_-- -_-- _- --
I m"l_Y'l l l I , ' '

---_---'-4- -'----_---_-4 ..... Op+n-t_
! n-- o_-_oop

I I I I I i i
5 10 15 20 25 30 35 40

Time (s)

Phase 2 CEM: Thruster #8

5 I I I I I I I

4['- -- -- I'- _1-- -- --t-- -- --I-- -- -1-- -- --1-- -- --1 -- --

I _ _ t I I I I

2 mmTT_m m I- - --l-- -- --I-- -- --I-- -- -I - -- -I -- --
lUfllflllllllllll I I I I I

, iU_lUiUllilllL _ _i_ _ _I_ _ ._I_ _ I _ _ ._I _ _

'111111111111111111I. ' I , , ,

.- mmmm - - -,- - -,- - n- - -
IIIIIIIIIIIIIIIII , ' ' t , +

+- -2 +""L' _'f-'J _ +-"1-- - --I-- -- --I-- -- "1-- -- -1-- -- -1 -- -- "

l I I I I I I I
-31---- --I- -- --I- - --l---- --I------I---- -I-- ----I---- -

I I I I I I I I

-41- - - I- - -I- - -I- - -I-- - --I-- - _ -- -- --1 -- -- -
I I I I I I I I

.51.__.__ i_
0 5 10 15 20 25 30 35 40

Time (s)

Phase 2 CEM: Thruster #4
5 I I 1 I I I I I

4 ...... I-- -- -I-- -- -'1 ......

--I------I----M-----I--

I

I I
I.... f
I I

I
I

1----

I

40

Figure 8. State Feedback Test 11: Closed-Loop versus Open-Loop Tune Response

41



I

l0

-10

-20

Phase 2 CEM: Accelerometer #1

, i i l I r i I
I I I I I I I |

-r--r---i-- 7-- _---I---I
I I I I I I /

3(] ----. -- --l---- --.-- --,-- -- .---- .---- M----.
I I I I I

- -- --I--- -- --I-- -- --t-- -- -I-- -- -I -- -- -

I I I I
"'" : ;_ -I-- -- ..

--.--.--.--,--.--.--.--,
I I I I I . I I .I

--'--'--'--'--'-'--'' i-I
i i i i i I_°°__ll
i l I I I i i "1

-5 0 5 10 15 20 25 30 35 40
Time(s)

3C

2C

-2C

-311

411

.51

Phase 2 CEM: Accelerometer #5

I I I I I I I
I I I I I I I

-- --I- -- --I-- -- --I-- -- --I-- -- -'1-- -- -I-- -- -I -- --
I I I I I I I

-- --_ -- --_ -- --I-- -- --I-- -- -_-- -- --I-- -- -I -- --
I I I I I I I

-- --_ -- --_- -- --I-- -- --I-- -- -_-- -- -q-- -- -4- --
I . [ I I I I I

--_im,,_-_._----- - J__

...... _--_._,_?_

-- --I- -- --I- -- --I-- - --I-- -- -1-- -- -'1-- -- -1-- -
I I I I I I I

-- --P- -- --_- -- --I-- - --I-- - -4-- -- -4-- -- -4 -- --
I I I I I i i

....I I I I _ Closed-Loop
I I I I i i
5 I0 15 20 25 30 35

Time(s)
40

Phase 2 CEM: Thruster #1 Phase 2 CEM: Thruster #5

_I ' I I , , _ , I sI I I i i f I
i i i i l i i i / / i i , i i /

"--'--'--'--'--'--'--'--, 'r ......| I I ' I F F F --I-- q---l---l---1
3l- -- --I'- -- --I-- -- --I'-- -- --I-- i I I I /• , , , ',--'--'--'--'--'--'--'--', i i ' l

,_ _.-.-.-_.__,__.__.__.___ ._ ,..-.-.-_.__,__.__.__.__.
l_ i /lh I i I I I _ II_ I /I I I I I I I

/ _LL_LI IL_L__I___I__ J__ _1___ _ ,1_.-L-L-/-I-I- --L- --I--- J-_ -I_ _ -I_ _ _Jo,,.,,,,,.., , , , . , ,.,
r___.LL J_ _ _f-__ /_[_-__ I I.R _1 I I Ilp"-I -- I I i I I I " i I I I I
_1 I II1' i i I I i _ I I i i I i

l- --..-.'-.--,--.--.--.--- _ lP-_rk-r _-'"I I' .-.--.--,--.--.--.--,

I _ I I _ I I _ I I I I , _ I , I i
-31"--- --I'-" -- --I--- -- --I-- -- --I-- -- ---I-- -- --I-- -- -I -- -- -t -31---- --I'-- -- --I-- -- --I-- -- --I-- -- -'1-- -- --t-- -- -'1-- -- -'[

I _ i i i , i i I I i i i i , i i I
.41----I- --I..- - -I- - -I- --..I-- -I-- .4---I 4F---I- --i.-. __l- --i_ - .-I-- .-,_ _ -4- _-.I

/ I I I I I I I / I I I I I _ I I /
-5 I I I I I 1 I / ._l i i I I I I I /

0 5 10 15 20 25 30 35 40 0 S 10 15 20 25 30 35 40
Time(s) Time(s)
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(Accelerometer/Thruster Pairs 8&4)
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3.5. Discussion of Results

In general the EEA controllers adequately performed their function. All the resulting

closed-loop systems remained stable even in Test 13 where additional modes were excited.

However in comparing the desired damping for a given mode with the measured damping

shown in Table 2, one can see a noticeable difference. The difference ranges from 0.4%

to 44.8% for both modes. A small part of this error can be attributed to sensor noise,

measurement error, unmodeled actuator dynamics, and nonlinear dynamics of the Phase

2 structure. It was determined by the ERA/DC analysis that a majority of the error in

the produced closed-loop damping was due to errors in the state space model of the

Phase 2 CEM.

The state space model was created with the assumption that all modes of vibration had

a damping of 0.1%. As described at the end of Section 3.3, the vibrational frequencies

were derived from an eigensolution of a MSC/NASTRAN model of the Phase 2 structure.

ERA/DC analysis of the open-loop test (Test 1) on the structure provided the actual

values for these modal parameters. Table 3 shows that there were inaccuracies in both

the assumed damping and the vibrational frequencies. Because Test 1 only substantially

excited modes seven and eight, only these modes can be confidently compared with the

state space model. The lack of confidence in the ERA/DC analysis of the other modes

is due to high signal-to-noise ratios present in the data obtained for the other modes.

Table 3. Phase 2 CEM - Measured and Modeled Open-Loop Modes of Vibration

Source Mode

7
Actual Measured Modes

8

MSC/NASTRAN State 7

Space Model 8

Frequency (Hz) Damping (%)

1.767 0.238

2.432 0.178

1.707 0.100

2.378 0.100
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There is a difference of 3.4% and 2.2% in the actual and modeled frequency values of

modes seven and eight, respectively, and a difference of 58% and 44% in the actual and

modeled damping values of modes seven and eight, respectively. The incorrect modal

parameters translate into a state space model with incorrect eigenvalues for modes seven

and eight. This in turn affected the eigenvalue assignment program. The eigenvalue

assignment program, using the incorrect state space model, calculated the state feedback

gain matrix that would move the eigenvalues of modes seven and eight to new locations

that would change the damping in those modes to a desired value. Since the model's

eigenvalues were not the correct eigenvalues of the structure, when this state feedback

gain matrix was applied to the actual structure the eigenvalues were moved to different

locations producing damping values different from those desired. The state feedback gain

matrix was calculated for the model but applied to the structure. Therefore, since the

open-loop eigenvalues of the model were different from the eigenvalues of the structure,

the resulting closed-loop eigenvalue for the model and the structure would be different

using the same calculated feedback gain matrix. The closed-loop eigenvalues of the

model produce the desired damping, but the closed-loop eigenvalues of the structure

provided some other damping values.

We can determine what effect a feedback gain matrix designed for an erroneous

model will have on the eigenvalues of the structure by applying that gain matrix to a

corrected model. Using the results from Test 1 in Table 2, a corrected state space model

of the Phase 2 structure was constructed using the measured modal parameters for modes

seven and eight. The gain matrices designed for the erroneous model were applied to the

corrected model, and the closed-loop eigenvalues were calculated. The damping ratios

were determined from these eigenvalues, and Table 4 shows the effect of the modeling

errors, detailed in Table 3, on the desired damping.
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Table 4. Phase 2 CEM - Effect of Modeling

Errors on Desired Damping using State Feedback

Test

2

3

4

5

6

7

8

9

10

11

Desired Damping of Mode (%) Damping Produced from Corrected
Model for Mode (%)

7 8 7 8

1.000 1.000 1.110 1.060

1.500 1.500 1.590 1.550

2.000 2.000 2.080 2.040

3.000 3.000 3.040 3.020

4.000 4.000 4.010 3.990

6.000 6.000 5.940 5.950

8.000 8.000 7.870 7.910

10.000 10.000 9.810 9.860

12.000 12.000 11.740 11.820

15.000 15.000 14.640 14.750

In addition to the modeling errors causing discrepancies in the eigenvalue assignment

routine, they also caused errors in the Phase 2 CEM test procedure. In Section 3.4 it was

described that during the first 10 seconds of a test, the structure was given an open-loop

sinusoidal excitation. This was accomplished by commanding air thrusters 8 and 4 to

fire at frequencies of 1.7074 Hz and 2.3782 Hz, respectively. The hope was to excite

the structure at the seventh and eighth natural frequencies. The thruster frequencies were

chosen to match the seventh and eighth natural frequencies of the structure according to

the state space model. As was pointed out earlier, the modal frequencies of the state

space model for these modes were found to be incorrect. The actual natural frequencies

of the Phase 2 structure were 1.767 Hz for mode seven and 2.432 Hz for mode eight.

The slightly out of phase excitation of the structure during the controller tests

produced a "beating" effect. This can be seen in the time response graphs of Figures

5-10 as a rounding off of the amplitude during the first 10 seconds. To present the effect
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more clearly, Figure 11 shows a MATLAB simulation of what an open-loop excitation

lasting 40 seconds would look like under the same conditions. Had the structure been

properly excited at the natural frequencies, a standard open-loop time response would

have looked like the MATLAB simulation depicted in Figure 12.

-3O

-4O

° !

Figure 11. 40 Second Open-Loop Out-of-Phase Excitation of Phase 2 CEM

MATLAB Simulation: Accelerometer #4

I I l I

I I I I

T----7 I

I I

5 15 20 25 30 35 40
"I'tme(s)

Figure 12. 10 Second Open-Loop Excitation of

Phase 2 CEM at Correct Natural Frequencies
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The previous paragraphs have described how errors in the state space model of Phase

2 CEM affected the performance of the eigenvalue assignment controllers. In order to

show that the interaction between the structure and the controllers is now well understood,

the complete test procedure was simulated in MATLAB. The simulation incorporated the

actual discrete time controllers used on the structure along with a corrected state space

model of the Phase 2 structure that contained the measured modal parameters for modes

seven and eight. Also in the simulation, the excitation was conducted with the incorrect

frequencies of modes seven and eight. Figures 13 and 14 present comparisons of the

MATLAB simulation with Phase 2 CEM test data for tests 1 and 11, respectively. These

figures are representative of the extremely close correlation between the time histories of

the simulations and those of the actual tests on the structure.
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4. SIMULATION OF OPTIMIZED OUTPUT FEEDBACK EFFICIENT

EIGENVALUE ASSIGNMENT CONTROLLER ON PHASE 2 CEM

A series of controllers based on the optimized output feedback EEA algorithm

were designed for the Phase 2 CEM. Disassembly of the Phase 2 CEM prevented

these controllers from being tested on the structure. In order to verify the controller

design software based on the optimized output feedback algorithm, these controllers

were simulated on the state space model of Phase 2 using MATLAB.

4.1. Controller Design

As described earlier the output feedback EEA algorithm based directly on Maghami

and Juang [8] was programmed in MATLAB. This version did not supply stabilizing

controllers for the Phase 2 CEM. Therefore, the optimized output feedback algorithm

was programmed in MATLAB for use as a viable controller design tool. This program

makes use of the constrained nonlinear optimizer function called CONSTR supplied in

the MATLAB Optimization Toolbox [33].

The optimized output feedback program requires the user to supply the system

state, input, and output matrices, to specify which open-loop eigenvalues are to be

kept unchanged during feedback, and to supply the desired closed-loop eigenvalues.

The program then computes the output feedback gain matrix such that the resulting

closed-loop system has the desired eigenvalues without affecting the prescribed open-loop

eigenvalues. Using the MATLAB optimizer, the program seeks to minimize the Frobenius

norm of the resulting gain matrix while attempting to stabilize the closed-loop system.

The limitations of output feedback restrict the number of eigenvalues that can be

assigned. Phase 2 has eight input thrusters and eight output ac.,celerometers. Therefore,

the maximum number of eigenvalues that can be assigned is (m + p - 1) or 15 or seven
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pairs of eigenvalues. This number includes the number of eigenvalues held to the open-

loop positions. The number of eigenvalues that can be held fixed must be less than or

equal to (m - 1) or 7 or three pairs. This means that up to four pairs of eigenvalues can

be assigned new closed-loop values. However, just as with the controllers designed using

the state feedback program, the output feedback controllers were designed to increase the

damping of modes seven and eight in the Phase 2 structure. So the program was supplied

with only two pairs of desired closed-loop eigenvalues. The program was also prompted

to hold the eigenvalues pertaining to modes three, four, and five fixed. These particular

eigenvalues were chosen through trial and error to produce the best closed-loop system

performance.

4.2. Simulation Results

Three different controllers were designed and simulated. The first increased the

damping of modes seven and eight to 1%, the second increased the damping to 4%, and

the third increased the damping to 10%. The controllers were designed using a corrected

20 mode model of the Phase 2 slructure that contained the measured modal parameters

for modes seven and eight obtained from Test 1 in Table 2. The simulation conducted

with these three controllers incorporated the complete test procedure carried out on the

actual Phase 2 structure (see Section 3.4). This is the same simulated test procedure

described at the end of Section 3.5. The controllers were simulated on a corrected 95

mode model of the Phase 2 structure.

The results of the simulations are shown in Table 5 and Figures 15-17. Table 5

compares the first ten open-loop eigenvalues of Phases 2 with the closed-loop eigenvalues

of each output feedback controlled system. Note that the eigenvalues for modes three,

four, and five remain at the open-loop values. The closed-loop eigenvalues for modes
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seven and eight reflect an increase in damping without a change in the natural frequencies.

Any deviation from this specific assignment was due to a roll-off filter that was placed

in series with the controller. The roll-off filter prevents the controller from affecting the

higher modes of the structure. The type of roll-off filter used in these simulations was

a first-order Butterworth analog lowpass filter, created using the BU'I_AP function in

the MATLAB Signal Processing Toolbox [34], with a filter cut-off frequency set at 6.3

Hz. The remaining eigenvalues were free to be repositioned based on the constraints

of the optimization.

Table 5. Optimized Output Feedback: Open-Loop and Closed-Loop Eigenvalues

Mode

1

2

3

4

5

6

7

8

9

10

Open-Loop
Eigenvalues

Assigned 1% Damping
on Modes 7 and 8

Closed-Loop Eigenvalues

Assigned 4% Damping
on Modes 7 and 8

-0.0008 + 0.8180/ -0.0486 + 0.8155i -0.0007 + 0.8224i

-0.0008 + 0.8301i -0.0024 + 0.8297i -0.0048 + 0.8348i

-0.0009 4- 0.8565i -0.0009 4- 0.8565i -0.0009 4- 0.8565i

-0.0011 4- 1.1308i -0.0011 + 1.1308i -0.0011 4- 1.1308i

-0.0011 + 1.1401i -0.0011 + 1.1401i -0.0011 + 1.1401i

-0.0019 + 1.9100i -0.0004 4- 1.9162i -0.0028 4- 1.8899i

-0.0266 + 11.1024i -0.1053 + 11.1239i -0.4210 4- 11.2065i

-0.0275 + 15.2807i -0.1374 4- 15.3223i -0.5473 4- 15.4740i

Assigned 10% Damping
on Modes 7 and 8

-0.1562 4- 0.7996i

-0.0181 + 0.8266i

-0.0009 + 0.8565i

-0.0011 4- 1.1308i

-0.0011 + 1.1401i

-0.6275 + 1.8604i

-1.1014 + 11.2964i

-1.4648 4- 15.6857i

-0.0187 + 18.6919i -0.1669 + 18.7581i -0.0131 + 18.6878i -0.4167 + 18.7954i

-0.0341 + 34.0618i -0.0281 + 34.0567i -0.0141 + 34.0455i -0.0078 + 34.0481i

Figures 15-17 show the simulated time responses for each closed-loop system

compared to an open-loop system undergoing the same initial excitations. The two

plots in each figure show the simulated acceleration at sensor/thruster locations 8 and

4. The acceleration responses can be easily compared with the data from state feedback

tests. As with the state feedback time response plots, only data for two sensor/thruster

locations are show for clarity and brevity.
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One can see in the acceleration time response plots, that low frequency oscillations are

present in the closed-loop system. These oscillations are in the 0.130 to 0.140 Hz range,

which identifies them as being related to the first three rigid body modes of vibration. The

high frequency oscillations in these plots are damped out, verifying that the controller is

functioning as designed. The continued low frequency oscillations are due to a coupling

between the controlled modes (modes seven and eight) and the rigid body modes that was

not present in the open-loop system. Although the response of accelerometer #8 in Figure

16 may not appear to damp out during the first 30 seconds of the closed-loop simulation,

the closed-loop eigenvalues for the three rigid body modes were stable. It should be

noted that a controller with these characteristics may not be viable for a real spacecraft

application, but it was sufficient for the purpose of demonstrating the optimized output

feedback algorithm.
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It must be noted that the optimized output feedback program is very sensitive to the

initial condition chosen for the coefficients ck (see Eq. (2.25)). Different initial ck vectors

produce different feedback gain matrices after optimization is complete. Although the

optimization continues until the closed-loop stability constraints are met, the optimization

does not necessarily return the feedback gain matrix with the overall minimum Frobenius

norm. Instead the optimization finds the local minima. This is a typical optimization

result when using gradient-based optimization algorithms on non-convex problems. An

alternate optimization algorithm, one that does not require gradients of the objective and

constraint functions, may have provided better results, but was beyond the scope of this

work. As for choosing the initial ck vector, a routine was developed to calculate ck from

the state feedback gain matrix that assigns the same eigenvalues.
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5. CONCLUSIONS

Three computer programs based on the EEA algorithms of Maghami and Juang

[8] have been developed in this paper. One program is the application of the full-

state feedback algorithm, a second is the application of the output feedback algorithm

presented in [8], and the third is an enhancement of the second program that includes

an optimization routine which chooses the feedback gain matrix such that the resulting

closed-loop system is stable. All three of these programs were written in MATLAB script

language and comprise the MATLAB EEA Toolbox.

Each of these three programs was used to design a series of controllers for the

Phase 2 CEM. In all cases the controllers were designed to increase the damping

in the seventh and eighth modes of vibration of the structure. However due to time

constraints, only the state feedback controllers were tested on the actual Phase 2 CEM.

The controllers based on Maghami and Juang's EEA algorithm for output feedback

did not provide stabilizing controllers in simulation and, therefore, were not tested on

the structure. The optimized output feedback program did provide stabilizing controllers

but was not tested on the Phase 2 CEM because the structure was disassembled prior

to completion of the optimized output feedback program.

Experimental validation of the state feedback assignment algorithm and program

has been presented in the paper. The state feedback controllers performed as designed

and placed the desired eigenvalues to new locations without affecting the remaining

eigenvalues. Discrepancies between the achieved structural damping and the desired

structural damping were explained and linked to modeling errors. Furthermore, as a

consequence of testing the state feedback controllers on the Phase 2 structure, there was

also an experimental validation of the Kalman filter as a state estimator.
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Theoptimized output feedback program has been verified through the use of computer

simulations. A series of optimized output feedback controllers were simulated in closed-

loop with a computer model of the Phase 2 CEM. In each design case an output feedback

gain matrix was calculated by the program to assign the desired eigenvalues while

minimizing the Frobenius norm of the gain matrix and, most importantly, producing

a stable closed-loop system. The simulations confirmed that the controllers did properly

increase the damping of modes seven and eight. However, the closed-loop time response

for each case did contain some continued low frequency oscillations after the higher

frequencies were damped out. Because output feedback in general limits the number

of modes that can be controlled, controllers could not be designed using the optimized

output feedback eigenvalue assignment method to provide better damping for those low

frequency modes.

It has been shown that the EEA algorithms using full-state feedback and optimized

output feedback can be used as viable control design tools. Furthermore, the MATLAB

programs of the EEA Toolbox can be easily used as numerically reliable control design

software.
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